Если измерение ведется в экспоненциальной системе, то k=1, H=lnN (нат); если измерение было произведено в двоичной системе, то k=1/ln2, H=log2N (бит); если измерение было произведено в десятичной системе, то k=1/ln10, H=lgN (дит).
Пример. Чтобы узнать положение точки в системе из двух клеток т.е. получить некоторую информацию, необходимо задать 1 вопрос ("Левая или правая клетка?"). Узнав положение точки, мы увеличиваем суммарную информацию о системе на 1 бит (I=log2 2). Для системы из четырех клеток необходимо задать 2 аналогичных вопроса, а информация равна 2 битам (I=log24). Если же система имеет n различных состояний, то максимальное количество информации будет определяться по формуле: I=log2n.
Справедливо утверждение Хартли: если в некотором множестве X={x1, x2, ..., xn} необходимо выделить произвольный элемент xi
Если N - число возможных равновероятных исходов, то величина klnN представляет собой меру нашего незнания о системе.
По Хартли, для того, чтобы мера информации имела практическую ценность, она должна быть такова, чтобы отражать количество информации пропорционально числу выборов.
Пример. Имеются 192 монеты. Известно, что одна из них - фальшивая, например, более легкая по весу. Определим, сколько взвешиваний нужно произвести, чтобы выявить ее. Если положить на весы равное количество монет, то получим 3 независимые возможности: а) левая чашка ниже; б) правая чашка ниже; в) чашки уравновешены. Таким образом, каждое взвешивание дает количество информации I=log23, следовательно, для определения фальшивой монеты нужно сделать не менее k взвешиваний, где наименьшее k удовлетворяет условию log23k