Пример. Предположим, что имеется термодинамическая система - газ в объеме V , который расширяется до объема 2V (рис. 6.1).
Нас интересует вопрос о координате молекулы m газа. В начале (а) мы знали ответ на вопрос и поэтому p1=1 (lnp1=0). Число ответов было пропорционально lnV. После поднятия заслонки мы уже знаем эту координату (микросостояния), т.е. изменение (убыль) информации о состоянии системы будет равно
?I = -k ln(2V /V) = -k ln 2 (нат).Мы получили известное в термодинамике выражение для прироста энтропии в расчете на одну молекулу, и оно подтверждает второе начало термодинамики. Энтропия - мера недостатка информации о микросостоянии статической системы.
Величина ?I может быть интерпретирована как количество информации, необходимой для перехода от одного уровня организации системы к другому (при ?I>0 - более высокому, а при ?I>0 - более низкому уровню организации).
Термодинамическая мера (энтропия) применима к системам, находящимся в тепловом равновесии. Для систем, далеких от теплового равновесия, например, живых биологических систем, мера-энтропия - менее подходящая.
4. Энергоинформационная (квантово-механическая) мера. Энергия (ресурс) и информация (структура) - две фундаментальные характеристики систем реального мира, связывающие их вещественные, пространственные, временные характеристики. Если А - именованное множество с носителем так называемого "энергетического происхождения", а В - именованное множество с носителем "информационного происхождения", то можно определить энергоинформационную меру f: A